Adding & Subtracting Decimals

- 1. Write the problem vertically, lining up the decimal points.
- 2. Add additional zeroes at the end, if necessary, to make the numbers have the same number of decimal places.
- 3. Add/subtract as if the numbers are whole numbers
- 4. Bring the decimal point straight down

ex: 14.2 - 7.934

14.200 7.934 6.266

Multiplying Decimals

- 1. Write the problem vertically with the numbers lined up to the right. The decimal points do NOT need to be lined up.
- 2. Ignore the decimals and multiply as if the numbers are whole numbers.
- 3. Count the total number of decimal places in the factors and put a decimal point in the product so that it has that same number of decimal places.

ex: 6.94 x 7.8

Dividing Decimals

- 1. Write the dividend under the long division symbol and the divisor to the left of it.
- 2. Move the decimal point in the divisor after the number to turn it into a whole number and then move the decimal in the dividend the same number of places. Then bring it up.
- 3. Divide as if the numbers are both whole numbers.
- 4. Annex zeros in the dividend as needed until there is no remainder. If your answer is a repeating decimal, write the answer using bar notation.

ex: 25.3 ÷ 0.3

Order of Operations

- 1. Grouping Symbols (parentheses, brackets, etc.)
- 2. Exponents
- 3. Multiplication & Division (left to right)
- 4. Addition \mathcal{E} Subtraction (left to right)

ex:
$$5 + 4(3 - 1.2)$$

$$5 + 4(1.8)$$

$$5 + 7.2$$

Adding Fractions & Mixed Numbers

1. Find a common denominator for the two fractions.

ex:
$$3\frac{3}{4} + 2\frac{1}{2}$$

2. Add the two numerators and keep the denominator the same.

 $3\frac{3}{4} = 3\frac{3}{4} + 2\frac{1}{2} = 2\frac{2}{11}$

3. Add the whole numbers.

 $5\frac{5}{4} = \boxed{6\frac{1}{4}}$

4. Simplify the answer and/or change improper fraction answers to mixed numbers.

Subtracting Fractions & Mixed Numbers

I. Find a common denominator for the two fractions.

- ex: $5\frac{1}{4} 1\frac{2}{3}$
- 2. Subtract the two numerators and keep the denominators the same. If the top numerator is smaller than the bottom numerator, borrow from the whole number and rename the top fraction.

 $5\frac{1}{4} = 5\frac{3}{12} = 4\frac{15}{12}$ $-\frac{2}{3} = 1\frac{8}{12} = 1\frac{8}{12}$

3. Subtract the whole numbers.

3 7/12

4. Simplify the answer.

Multiplying Fractions & Mixed Numbers

- 1. Turn any mixed numbers and whole numbers into improper fractions.
- ex: $2\frac{1}{6} \cdot \frac{4}{7}$

- 2. Cross-simplify if possible.
- 3. Multiply the numerators and then multiply the denominators

- $\frac{13}{3\%} \cdot \frac{\cancel{4}}{7}^2 = \frac{26}{21} = \boxed{1\frac{5}{21}}$
- 4. Simplify the answer and/or change improper fraction answers to mixed numbers.

Dividing Fractions & Mixed Numbers

- 1. Turn any mixed numbers and whole numbers into improper fractions.
- ex: $7 \div 1\frac{3}{4}$
- 2. Keep the first fraction the same, change the division to multiplication, and flip the second fraction to its reciprocal.
- $\frac{7}{1} \div \frac{7}{4}$

3. Multiply the fractions.

- $\frac{1}{1} \cdot \frac{1}{1} \cdot \frac{4}{1} = \frac{4}{1} = \boxed{4}$
- 4. Simplify the answer and/or change improper fraction answers to mixed numbers.

Ratios

Ratios are comparisons of two quantities. There are 3 different ways to write ratios:

- Fraction $\left(\frac{A}{B}\right)$

- Colon (A:B)

- Word Form (A to B)

ex: write the ratio of triangles to circles in 3 ways: \triangle \triangle \triangle \triangle \triangle \triangle

$$\frac{4}{2} = \boxed{\frac{2}{1}, 2:1, 2 \text{ to } 1}$$

Ratios can be simplified just like fractions.

Rates & Unit Rates

Rates are ratios that compare quantities measured in different units. A unit rate is a rate with a denominator of 1.

To convert a rate to a unit rate:

- 1. Divide the numerator by the denominator
- 2. Either write your answer as a fraction with a label for the both the numerator and denominator OR as one number labeled with the first unit "per" the second unit

ex: express as a unit rate: 125 miles in 4 hours

$$\frac{125 \text{ mi}}{4 \text{ hr}}$$
 $125 \div 4 = 31.25$

 $\frac{31.25 \text{ mi}}{1 \text{ hr}}$ or 31.25 miles per hr

Fractions, Decimals, & Percent

To convert a:

- Decimal to Percent: move the decimal point 2 places to the right

- Percent to Decimal: move the decimal point 2 places to the left

- <u>Decimal to Fraction</u>: write the decimal over the place value of the last digit and then simplify

- Fraction to Decimal: divide the numerator by the denominator

- Percent to Fraction: write the percent over 100 and then simplify

- <u>Fraction to Percent</u>: convert the fraction to a decimal and then convert the decimal to a percent

ex:
$$0.008 = \frac{8}{1000} = \frac{1}{125}$$

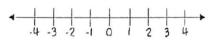
ex:
$$\frac{1}{5} = 5$$
) 1.0

ex:
$$45\% = \frac{45}{100} = \boxed{\frac{9}{20}}$$

ex:
$$\frac{3}{10} = 0.3 = 30\%$$

Percent of a Number

1. Turn the percent to a fraction or decimal.

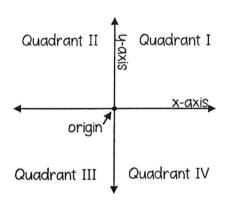

2. Multiply the fraction/decimal by the number.

ex: Find 18% of 40

$$0.18 \cdot 40 = 7.2$$

Comparing Integers

Integers are numbers without fractional parts. They can be positive, negative, or zero. The further right a number is on the number line, the greater it is.

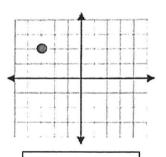


The absolute value of a number is the distance the number is from zero.

ex: compare with <, >, or =

$$-7 \bigcirc |-q| \leftarrow \text{The absolute value}$$
of $-q = q$

The Coordinate Plane

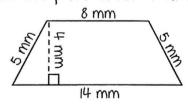


Ordered Pair: (x, y)

To graph a point on the coordinate plane, start at the origin. The first number in the ordered pair (the x-coordinate) tells you how far left (if negative) or right (if positive) to move. The second number (the y-coordinate) tells you how far up (if positive) or down (if negative) to move.

ex: Graph the point (-3, 2) and state the quadrant in which it is located.

Start at the origin, and move LEFT 3 and UP 2



Quadrant II

Perimeter, Area and Volume

- Perimeter of Any Polygon: add all side lengths
- Area of a Rectangle: A = lw
- Area of Parallelogram: A = bh
- Area of Triangle: $A = \frac{1}{2}bh$
- Area of Trapezoid: $A = \frac{1}{2}h(b_1 + b_2)$
 - Volume of Rectangular Prism: V = lwh

ex: Find the perimeter ξ area:

Perimeter: P = 5 + 8 + 5 + 14 = 32 mm

Area: This is a trapezoid, so use the area of a trapezoid

formula:
$$A = \frac{1}{2}h(b_1 + b_2)$$

The bases are the sides that are parallel, and the height is perpendicular to the bases.

$$\rightarrow$$
 A = $\frac{1}{2}$ (4)(8+14) = 44 mm²